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attenuation y are the three parameters reconstructed by the algorithm, given that all of
them are laterally invariant. For a medium whose parameters c, p, and y have m > 1 con-
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Helmholtz ¢ rier Transform. Our results are illustrated with several numerical examples.
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1. Introduction

Inverse scattering has been an active field of research in science, mathematics, and engineering over the past several dec-
ades (see e.g. [2,3,6,8,10-12,14]). It has applications in a wide range of fields, such as radar, medical imaging, oil exploration,
microscopy, etc. In this paper, we construct numerical algorithms for the solution of inverse scattering problems in the
acoustic environment in three dimensions. Our inverse scattering scheme assumes that the speed c(x,y,z) of propagation
of sound, the density p(x,y,z) and the attenuation 7y(x,y,z) are independent of the variables x,y, so that c(x,y,z) =
c(2), p(x,¥,2) = p(2),7(x,¥,2) = y(2); an acoustic medium possessing these properties will be referred to as a layered med-
ium, or layered environment.

The inverse scattering schemes we construct are based on a collection of so-called trace formulae, and can be viewed as
extension of the work started in [3], where the observation is made that (at least in layered media) it is possible to construct
inverse scattering algorithms that, given a smoothly varying medium, require few measurements to reconstruct it. More spe-
cifically, given a medium whose parameters c, p, and y have m > 1 continuous derivatives, and data measured for all fre-
quencies o on the interval [—a,a], the error of the reconstruction decays as 1/a™ ' as a — oo. In this respect, the
algorithm of [3] is similar to the Fourier Transform, and a strong argument is made that this is a very desirable property.
While the algorithm of [3] assumes that the parameters p and y are constant and the parameter ¢ depends on z, the schemes
of this paper reconstruct c, p, and 7, provided that they only depend on the coordinate z.

The paper is organized as follows: Section 2 introduces the mathematical formulation of the problem. In Section 3, we
summarize several well-known mathematical facts to be used in the paper. In Section 4, we introduce analytical tools to
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be used in the construction of the algorithm. Section 5 states the algorithm in detail, and a complexity analysis is included. In
Section 6, several numerical examples are used to illustrate the performance of the algorithm.

2. Statement of the problem

The inverse scattering problem is the problem of reconstructing the various parameters of scattering objects, such as the
density, the speed of sound, and the attenuation, with the knowledge of the incident and the scattered field. Below is the
formal mathematical formulation of the three-dimensional inverse scattering problem in a layered acoustic medium.

2.1. The Helmholtz equation

The inverse scattering problem we investigate arises from the time domain wave equation

Zn =0y (1

e pX)
where y(x,t) is the value of the scalar field at a point x at time t, c(x) is the local speed of wave propagation at a point x, and
p(x) is the density at a point x. In order to solve (1), we assume

W(x,0) =y (x)e", (2)

where k is a complex number with non-negative imaginary part, and ¢, is the speed of wave propagation outside of the scat-
tering structure. Substituting (2) into (1), we obtain

1 2 c?
XV - (—Vnp (x ) +kt
PRV o VW ) I g
Since the inverse scattering scheme assumes that the speed c(x,y, z) of propagation of sound, the density p(x,y,z) and the
attenuation y(x,y,z) are independent of the variables x,y, i.e,, c(x,y,z) = c(2), p(x,y,z) = p(2), y(x,¥,2) = y(2), (3) can be
rewritten by the formula

Vy(x, r))7 (1)

Yi(x) = 0. (3)

Py P 1 dp Oy 2
otz pmd oz K @ o @
Throughout this paper, we use the notation
S _14q@)+i9@) (5)
@ 1 e

where q(z) and y(z) are known as potential and attenuation of the layered acoustic medium, and that p,q,y € c3([0,1]), i.e.,
p.,q,y are twice continuously differentiable everywhere, and are defined by the formulae

p(x) = p(0)=p,, forall x<O, (6)
px)=p(1)=p,, forallx>1, (7)
q(x) =q(0)=gq,, forallx<0, (8)
qx)=q(1)=gq,, forallx =1, 9)
y(x) =7(0)=7y,, forallx<O, (10)
y(x)=7y(1)=1y,, forallx>1. 11

Suppose now that the angle of incidence with respect to the normal to the x — y plane is 0, and

Ui(x,2) = € p(2). (12)

Substituting (12) into (4), we obtain

@ (%, k) — ’;((;‘)) H X)) LK (1+qx) +1-7(x) —02) - p(x, k) =0, (13)

where
a = sin(6). (14)

Eq. (13) is the well-known scalar Helmholtz equation in a layered acoustic medium. For any complex k, we consider solu-
tions of the Helmholtz equation ¢, (x, k) and ¢_(x, k) defined by the formulae

¢+ (X, k) = ¢inc+ (X, k) + ¢scat+ (Xv k): (15)
¢ (Xv k) = Pinc_ (Xv k) + Pscar— (Xv k) (16)
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with

binc (X, k) = A, (k)elkv/Trarin-ex (17)
forall x < 1,

Pinc (X, k) = A, (k)elv/ 1z i (18)

forallx > 1,

Pine_ (X k) = A (Kje kv Trarin (19)
for all x <0,

Dine(0.k) = A (kpe /170 T (20)
for all x > 0, where AL (k) are compleX, and ¢, , ¢scac Satisfying the outgoing radiation boundary conditions

Decars (0, K) + ik /T + Gy + 17y — 0200 (0, k) = 0, (21)

Prears (1,K) —iky /1 + Gy + i)y — 02 ¢psars (1,k) = 0. (22)
Combining Egs. (13)-(20), we obtain the equations

" P
¢scat+ (X, k) p(X)

(@ ) (= 1)~ 5 Ty iy = o)A g T 23)

forallx <1,

: ¢;cat+(x7 k) + k2 ) (1 + q(x) +i- '})(X) - aZ) ' ¢scat+(xv k)

¢/s/cat+(x7 k) N l;/((;:)) ' ¢;cat+(x7 k) + k2 : (1 + q(x) +i V(X) - 062) : (/)scaw (Xv k)

= (0@~ a5) (7 = 72)) ~ S 1 @y 17, = o)A, g T 24)

forall x > 1,

B 010 =20 (0041 (1400 41700~ ) e (0K

— (G ) = 1)+ 5 Ty iy = 02) A e W (25)

for all x <0,

Phar (%.K) = Z&) Plar () + K (14 q(X) +19(X) = ) - (. K)

— (@~ )+ 10~ 72) + D k14 0y 4 17, = o) A (g TR (26)

for all x > 0.
Combining Eqs. (23)-(26) with (6)-(11), we observe that, for any complex k, there exist complex numbers p, (k) and
o (k) such that

Pecars (X k) = 1. (K) - A (k)e™V s forall x > 1, (27)
Dscars (X, k) = o (K) - As(k)e kv I0+i=2x for al] x < 0, 28
0+

combining (18), (19), (27), and (28), we obtain

¢ (% k) =1+ py (k) <A, (k)ekv1+atin=ax for a]l x > 1, (29)
d_(x, k) = (1 + py_(k)) - A_(k)e *V1rar+in==x for a]l x < 0. (30)
Thus, for any complex k, the boundary value problems for ¢.,¢_ (Eqgs. (13)-(22)) are reformulated as initial value

problems (Egs. (13), (29), and (30)). Furthermore, for any k € C, coefficients 1 + 1, (k) and 1+ p,_(k) in (29) and (30) are
both nonzero.
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2.2. The impedance functions

We will be denoting the upper half complex plane by C*. For any k € C*, we define the functions p,,p_: (R,C") — C by
the formulae

4. (0 k)
P00 = o), ) 31
p ek = 2K (32)

" Cikp(x)d_(x.K)’

where ¢_, ¢_ are solutions of the Helmholtz equation (13), and p is the density of the scattering structure. In a slight gen-
eralization of standard definitions (see, e.g., [3,12]), we will be referring to the definitions p,,p_ as impedance functions.

Remark 2.1. It is easy to see that the impedance functionsp_, p_ do not depend on the coefficients A, (k) in initial conditions

(29) and (30). Therefore, if we choose A, (k) = m, A_(k) = T the initial conditions (29) and (30) become
¢, (x, k) = eV 1a+=2x for a]l x > 1, (33)
¢_(x, k) = e" ™V 1ra+in—2x for g]] x < 0. (34)

Thus, we formulate the inverse scattering problem for Eq. (13) as follows:Suppose that each of the functions
p.q,7 :[0,1] — R" has m continuous derivatives with m > 2, and that

p(x) >0, (35)
1+q(x)—o? >0, (36)
P(x) >0, (37)

for all x € [0, 1]. Suppose further that we are given the values of the corresponding impedance functions p. (0,k) for an appropri-
ately chosen collection of real frequencies {k;} and incidence angles {0}, and the “initial” values p(0), q(0),7(0). We would like to
reconstruct p(x),q(x),y(x) for all x € [0, 1].

This paper is devoted to the construction of an algorithm for the solution of the above problem.

3. Analytical preliminaries

In this section, we summarize several well-known mathematical facts to be used in the sections below. These facts are
given without proofs, since all of them follow easily from the apparatus built in [1,3-5,13].

3.1. Notation

In this paper, we will be denoting the upper half plane by C*. We will be denoting by c'[a, b], the space of all functions
R' — R' that have m continuous derivatives (m > 2), and such that f(x) = f(a) for all x < a, and f(x) = f(b) for all x > b. In
other words,

fecglab] (38)

means that f has m continuous derivatives and is constant outside the interval [a, b]. Further, we denote f(a) by fi, and f(b) by

fo.
For any a > 0, the region K(a) c C is defined by the formula

a) = {klk € C,Im(k) > 0,|k| > a}. (39)

In other words, K(a) consists of all points z in C* such that |z| > a
3.2. Basic lemmas

In this section, we introduce several basic lemmas to be used in the sections below following closely to [3].

Lemma 3.1. Suppose that f e c!(R) with | a non-negative integer. Suppose further that f¥(0) = 0 for 0 <j < I,f" is absolutely
continuous. Then there exists a positive number ¢ such that

/f ekt dt — Z<2k>ﬂ‘() <ﬁ>m(f’ )+ b(x,k)) (40)

with b : R x C* — C an absolutely continuous function of x € [0, 1] such that
Ibx. k)| < (41)
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for all x € [0,1], k € C*. Furthermore, if f(x) = 0 for all x > D with D a positive number, then
|b(x, k)| < c (42)
forall (x,k) € Rx C".

Lemma 3.2. Suppose that a:C — C is an entire function and that A:R x C — C™" is an n x n-matrix whose entries

a;j(x,2),1,j =1,...,n are continuous functions of x and entire functions of z for all x € R Then for any z € C, the differential
equation

Y(x.2)=Ax,2) - y(x,2) (43)
subject to the initial condition

y(0) =c(2) (44)

has an unique solution y(x,z) for all x € R. Moreover, y(x,z) is an entire function of z.

3.3. Schridinger equation and Riccati equation

This section describes the basic facts about the Helmholtz equation and its connections with the Schrodinger equation
and the Riccati equation in the context of scattering problems. Lemma 3.3 describes the fact that a Schrédinger equation with
outgoing radiation conditions can be converted into a second kind integral equation with the Green’s function of the corre-
sponding Helmholtz equation. Lemma 3.4 describes the Green'’s function for Helmholtz equation with outgoing radiation
conditions.

Lemma 3.3. Suppose that G : [0,1] x [0,1] — C is the Green’s function of the boundary value problem

W' (%, k) + IPy(x,k) =0 (45)

W' (0,k) +iky(0,k) = 0 (46)

W/(1,k) — ik (1,k) = 0 (47)
for any complex k # 0. Then the boundary value problem

W (%K) + (K + n(0)p(x, k) = f(x, k) (48)

W'(0,k) +iky(0,k) =0 (49)

W'(1,k) —iky(1,k) =0 (50)
is equivalent to a second kind integral equation

1
bk = = [ Gt omew(eode + g k) (51)
0
with f,g :[0,1] x C — C and g defined by the formula
o1
gk = [ Gx e ot (52)
0

Lemma 3.4. For any complex k0, the Helmholtz equation

V(. k) + Ky (x, k) = 0 (53)
with the outgoing radiation conditions (21) and (22) has the Green’s function

1 eik(tfx) x < t,
Gr(x,t) = 5% { G x> 0 (54)

The following lemma connects the solutions of the Helmholtz equation to those of Schrodinger equation via direct
transform.

Lemma 3.5. Suppose that q,7, p : R — R are c?>-functions such that 1 + q(x) — o> > 0,y(x) > 0, p(x) > 0, for all x € R, functions
n,t: R — C are defined by the formulae

n(x) = /1+q(x) + iy - a2, (55)

t(x) = /OX n(t)dr, (56)
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and that contour I is the image of the mapping R' — C' defined by the formula

(x) = / J1+am -2 +ipde (57)
Jo
Suppose further that the functions n,g : I' — C are defined by the formulae

-3

/" / 2
x ((2” os(0) ) (4000 +i700 ~ 22— (¢'(0 +17"(%) - (1 +9(0 + (%) —a2>+§(q'<x)+iv'<x>>2>,

P\ p®)
(38)

g(t) =f(x) - pHx) - (1 +q(x) +iy(x) — o) H. (39)
Finally, suppose that the function ¢ : R x C — C satisfies the equation

¢"(x. k) — %W(& k) + k(14 q(x) + iy — a?)p(x, k) = f(x), (60)
and the function  : I' x C — C is defined by the formula

Yt k) = p3(x) - (1+q(x) +17(x) = @)t - p(x.K). (61)
Then  satisfies the Schrodinger equation

V(6 k) + (I () -y (e k) = g(0). (62)

Corollary 3.6. Suppose that under the conditions of the preceding lemma, q,7, p € c3([0,1]). Suppose further that the functions
V., W_: T x C— C are defined by the formulae

G

: ¢+(X7 k)v (63)

(k) = pE(x) - (1+qx) + ip(x) — o)
— o)t ¢_(x,k). (64)

V(6 k) = pE(x) - (1+q(x) +ip(x) — 0?)
Then .,y _ satisfy the ODEs

V(6 k) + (K2 4 n(6) -, (k) =0, (65)

W (6 k) + (K +n(6) -y (tk) =0

R

subject to the boundary conditions

W (k) = (k) - et (67)
for all Re(t) > Re(T,), and
V(LK) = pr(1+qy — a2 + iy, e, (68)

for all Re(t) < 0 with Ty, é(k) # O defined by the formulae

1
_ 7 _n2
Tlf/o V14000 +ip(x) — o2 dx, (69)
£(k) = py (1 + Gy — 02 + iy, eV T i, (70)
Furthermore,

. ey 120 11 4 q(x) +ip(x) — o) ' - (q'(x) + iy (x
Pk = /1 q) + 1) — 2 g e L 2 Skl L ALA Y 1)

: 120 114 qx) +ip(x) —02) " (q(x) + 17 (x
pi(ka):wﬂ(x)ﬂy(x)%z ﬂ_k;//(;(()tx)(t’k)fzp(m 1(1+4(x) )lflip)(x) ) @X+E) (72)

Remark 3.1. Lemma 3.5 provides a connection between the solutions of the Helmholtz equation (60) and those of the
appropriately chosen Schrédinger equation (62). This connection will be used in the following chapter as an analytical tool.
However, it is not useful in numerical computations since the connection between 1 and q (see Eq. (58)) is generally
ill-conditioned.
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Observation 3.2. Suppose that q,7, p € c3([0, 1]). Then according to Lemma 3.5 and Corollary 3.6,

t=\/1+q +ip; —o*x, (73)
and consequently
$. (%K) = Py - (1 4+, +1iy, —02) %y (£ k), (74)

for all x < 0. Now, suppose the function y, is defined by formula (63). Defining the scattered field Y, : I' x C — C by the
formula

vtk =pt (V T+q+iy - 0‘2)2 (€™ 4 e (£, K)), (75)

we immediately obtain the Schrodinger equation

PX)

p(x)

x \/1 Gy + iy, —02) - eV Irasn (76)

Wieaes (EK) + (4 (O)Wears (£.6) = p) 3 - (14 q(x) +ip(x) — 02)F - (—K>((@ — 4) +i(y — 7)) +

subject to outgoing radiation conditions (21) and (22).

The following lemma introduces the Riccati equations satisfied by the impedance functions p. ,p_. They are obtained by
substituting (31) and (32) into the Helmholtz equation (13).

Lemma 3.7. Suppose that under the conditions of the preceding lemma,
W, (%o, ko) # O, (77)
¥_(x0,ko) # 0, (78)

at some point (Xo, ko) € R x C. Then there exists a neighborhood D of (xo, ko) such that the impedance functions p_,p_ satisfy the
Riccati equations

, . 1+ q(x) +ip(x) — o?
P k) = —ikp(r) - (p? ek - I L 020, (79)
p*(x)
; a2
P (k) = ikp(x) - (p%(x, . 1+q(x) er iy(x) — o ) (80)
p*(X)
forall (x,k) € D.
Observation 3.3. Combining formulae (33) and (34), we easily observe that
\/—’_2
pr,k):W, forall x > 1 (81)
2
] _ 2
p_(x.k) = —V”q];’“/l"ﬂ for all x < 0 (82)
1
for all complex k # 0.
Observation 3.4. If y(x) = 0 for all x € R, it is easy to see from Eqs. (79)-(82) that
p+(x7 k) = p+(xv —k), (83)
p—(xv k) = p— (X, 7k)7 (84)

for all real k, since p, (x, k) and p, (x, —k) satisfy identical differential equations and boundary conditions, and the same is true
for p_(x,k) and p_(x, —k), too.

4. Mathematical apparatus

In this section, we introduce analytical tools to be used in the construction of the algorithms of this paper. This section
discusses the following three facts.

(A) For any x € R, the impedance functions p, (x,k),p_(x, k), defined by (31) and (32), are analytic functions of k in the
upper half plane C*. Furthermore,
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_ 1 : 1T pX) - (@x)+iy(x) =2-(1+qX) +ip(x) —o*) - p'(x) -2
p+(x7k)_w- 1+q(x)+lyfoc27ﬁ- 2070 (0140 + 5 — ) +0(k™), (85)

_ 1y : 1T p(x) - (X +iy(x) —2-(1+q(x) +ip(x) — o) - p'(x) -2
p,(x,k)_m- 1+q(x)+lyfcx2+ﬁ- 2070 (0140 + 5 — ) +0(k™) (86)

as |k| — oo forall x e R, k € C*.
(B) Forany fixed x € R, the difference between the impedance functions p. (x, —k) and p_(x, k) decays like a constant times
k™™, where k € R, and m is the smoothness of the scatterer. In other words,

p.(x,—k) —p_(x.k) = O(k™), (87)

as |k| — oo, k € R.
(C) For any a > 0, and all x € R,

PX) - (q'(X)+ 1) (%) =2 p'(x) - (1+q(x) +iy(x) — o)

a

2 . '

=7 (1 +qx) +iy(x) - o?)p?(x) / (P, (x,k) —p_(x,k))dk +O(a~ ™), (88)
J—a

where m is the smoothness of the scatterer, p, (x, k) and p_(x, k) are impedance functions defined by (31) and (32), p is the
density of the scattering object, q is the potential, and y is the attenuation. (88) is an example of a trace formula.The proofs in
this section are modeled after those in [3], and details can be found in [7].

4.1. Boundedness

This section establishes the basic properties of the impedance functions p,,p_, defined by (31) and (32). Lemma 4.1 de-
scribes the behavior of ¢, ¢_ in the vicinity of k = 0 in the complex plane. Lemma 4.2 describes the properties of the imped-
ance functions p,,p_ near k = 0. Lemma 4.3 shows that ¢_, ¢, are nonzero for all real x and complex k # 0.

The following lemma describes the behavior of ¢, ¢_ in the vicinity of k = 0 in the complex plane.

Lemma 4.1. Suppose that p,q,y € c3([0,1]), and A > 0 is a real number. Then, there exist positive numbers J, ¢, and n such that

16, (0 k) — 1] < 2k, (89)
16 (0 k) — 1] < 2k, (90)
¢;<x,k>,,‘k\/1+q2+i«,2,az.f)g> < ikl (1)
¢L<x7k>+ik\/1+q1+iv1focZ-pp(’]‘) < ik (92)
¢, (%, k) #0, (93)
é_(x,k) =0 (94)

for all real x € [—A,A] and complex k such that |k| < 6. In (89)-(94), q;, 45, Y., 7,, are defined in Section 3.1, o is define by (14), and
¢ (x,k) is the field at x.

The following lemma describes the properties of the impedance functions p_,p_ near k = 0.

Lemma 4.2. Suppose that p.q,7y € c3([0,1]) and A > 0 is a real number. Then there exists a real number 5 > 0 such that the
impedance functions p,p_, defined by (31) and (32), are continuous functions of (x, k) for all real (x,k) € D, where D is the set of
all pairs (x,k), where x € [-A,A],k € C,k # 0, |k| # 6. Furthermore,

/ V. — 2
h[anr (X, k) — M7 (95)

k—0 p2
. V1 4q iy —o?
limp_(x.k) = I — (96)

where qy,q,,71,74, P1, P, are defined in Section 3.1, o, p_,p_ are defined by (14), (31), and (32), respectively.

Proof. Due to Lemma 4.1, there exists a real number ¢ > 0 such that ¢, (x, k)#0, ¢_(x, k)0 for all real (x, k) € D. Therefore,
the impedance functions p_,p_ are well-defined in D, and their continuity follows from the continuity of ¢, ,¢_, ¢, ¢/, p, as
well as their definitions (31) and (32). Egs. (95) and (96) are obtained via the direct application of (89)-(92) and (31) and
(32). O
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Remark 4.1. Due to Lemma 4.2, if we define

\/_‘_“'_j‘f
(x,0)= VI T D T =

_ 97
b, 2, 97)
AT aq v — o2
p_(x,0) = w./ (98)
1

then p,,p_ are continuous functions at k = 0.
The following lemma states that ¢,,¢_, ¢, ,¢" are nonzero for all real x and complex k # 0.

Lemma 4.3. For all x € R and complex k # 0,

¢, (x,k)#0, (99)
@' (x,k) # 0, (100)
¢_(x,k) #0, (101)
¢ (x.k)#0 (102)

Proof. Since the proofs of this lemma for ¢, ¢’ and for ¢_,¢" are nearly identical, we only prove (101) and (102). Since
¢_ satisfies (13) with the boundary condition (34), we decompose ¢_ into two parts via the formulae

d_(x,k) =ux, k) +iv(x,k), (103)
¢ (x,k) = ' (x, k) +iv'(x, k), (104)

where functions u, v: R x C — C satisfy Eq. (13) with boundary conditions

u(x, k) = cos (k,/l +q; +iy; — a2x>, (105)
v(x, k) = sin (lq/l +qq +1iy; — oc2x> (106)

for all x < 0 and k # 0. The Wronskian W (u, v) of the pair u, v is

Wu,v)=/1+q, +iy, — -k (107)

for any x € R. Therefore, for any k # 0,u(x, k), v(x, k) can not be zero simultaneously, nor can v'(x, k), ¢’(x, k). Now, (101) and
(102) follows immediately given (103) and (104). O

4.2. Asymptotics and smoothness

The principal purpose of this section is to formulate and prove the facts (A) and (B) described in the beginning of Section
4. We begin by deriving Egs. (85) and (86), and prove Lemma 4.4, under the assumption that such asymptotic forms exist for
impedance functions. Then, we demonstrate the existence of such asymptotic expansions (Lemma 4.9), by converting the
Schrédinger equation into an integral equation (Lemma 4.5) and applying the Neumann series (Lemma 4.6). Finally, the
statements (A) and (B) are proved in Theorems 4.3 and 4.4.

The following lemma yields the first two terms in the asymptotic expansions of the impedance functions p_,p,.

Lemma 4.4. Suppose that impedance functions p_ (x,k) and p_(x,k) are defined by (31) and (32), and that

G(X) &KX Gna(X)

x,k) = ap(x) +— ok™), 108
P.xk) = a0 + ==+ g 0™ (108)
b] (X) b2 (X) bmfl (X) _m
_(%,k) =bo(X) + ——~+ +--- 4 +O0(k 109
p ( ) ) 0( ) ik (lk)2 (l.k)m,l ( ) ( )
for large real k, and integer m > 2. Then,
1
ap(X) = bo(x) = ——- /1 +q(x) +iy — a2, 110
o) = bolo) = s/ 1+ 00 +17 (110)

and

_ _ PR (@X) + (%) —2- (14q(x) +1y(x) — o) - p'(X)
0 =ity = 420 (11400 + 700 - )

, (111)

where p,q,7y, o are defined in (13).
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Proof. It is easily observed from (79) and (80) that the impedance functions p. (x, —k), p_(x, k) satisfy the same Riccati dif-
ferential Eq. (80). Hence,
a;(x) = b;j(x), for all the even i, (112)
ai(x) = —bi(x), for all the odd i. (113)

Identities (110) and (111) are obtained by substituting (109) into (80) and comparing terms at the appropriate powers of
k. O

The following lemma converts the Schrédinger equation (66) into an integral equation.

Lemma 4.5. Suppose that y_ is defined in (64), and q,p,y are functions in c3([0,1]) such that for all x € [0,1],1+
q(x) —o? > 0,y(x) > 0, p(x) > 0. Suppose further, for all x € R and complex k+0,

tx) = / V1+a() -2 +ip(r)dr, (114)
JOo

m(t,k) = e*y_(t,k), (115)

n(t, k) = fel.l—:wi(t, k). (116)
Then,

m = F(m) + (14 q, + iy, — 2 fp,?, (117)

1 ‘ ik(t—T

n(t, k) = m(t, k) _ﬁ/o n(v)e?*=m(t, k) dr, (118)
where

Filf)(t) = 57 / 0t 2k f (7 dr. (119)

Proof. Combining (66) and (68) with (115) and (116), we observe that m satisfies the equation

m"(t, k) — 2ikm'(t, k) = —n(t)m(t, k) (120)
subject to the initial conditions

m(0.k) = (1-+q, +ip, - o2)ip;?, (121)

m'(0,k) = 0. (122)

Multiplying (120) by e-%* and integrating the result from O to t, we have

t
7/ n(t)e**Im(t k) dt. (123)
0
Now, (117) is obtained immediately via integrating (123) from 0 to t, and (118) follows from (123), (117) and (118). O

Observation 4.2. Since #(7) is continuous on the entire complex plane and zero outside of a bounded region, the functions
n(7)(1 — e2*=7) and n(t)e?* - are bounded for all real t, 7, and k € C*. Therefore, there exists a real number ¢; > 0 such
that

IFi| < (124)

|’ |’
and hence there exists a real number A > 0 such that
[Fel <1 (125)
for all k € K(A) (see (39) for the definition of K(A)).
Lemmas 4.6 and 4.7 analyze the Neumann series for the integral Eq. (117).

Lemma 4.6. Suppose that q, p,y are three functions in c5 ([0, 1]) with integer > 2. Suppose further that contour I' is the image of
the mapping R! — C' defined by the formula

tx) = /OX V1+a(1) -2 +ip(r)dr. (126)

Then for any integer 1 < I < u, there exist functions a;: I' - R,j=1,...,;0— 1, and a, : I x C" — C, such that
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. 1 7% — 1\*
m(t,k) = (1 4+q +iy, —o?)ip 2 + Z (211() a;(t (ﬁ) a,(t, k), (127)
where m; : I' x C* — C is defined by the formulae
mo(t, k) =0, (128)
. 1 1 1 -1
mi(t,k) = (1+q, +1ip, - 062)‘1%2 + Fe(mia)(6K) = (14 + iy, — o2)ip;?
21kt T)
to / 0 (k) de. (129)
In (127), ddfjj are bounded and absolutely continuous forallt € I',j=1,..., - 1, and a,(t, k) is bounded and absolutely con-

tinuous function of t for all (t,k) e I' x C".

Proof. We prove this lemma by induction. For [ = 1, formulae (128) and (129) yield
1
my(t.k) = (1+q, + iy, — 02)p;? (130)
for all (t,k) € I' x C*, which is already in the form (127). For [ > 1, assuming that m(t, k) is in the form (127), we obtain m;,,
using (129):

My (6 k) = (1 +qq + iy, — o 3" 7% sz/ n(t e2kE=Dymy (1, k) dt
= (1+q +1y, — 02 + Lt k) + Lt k) + I (6 k) + L(t, k) (131)
with I : I' x C" — C,1 <j < 4 defined by the formulae
1/t
hek = [ nodes Z (z,k) [ nera (132)
5 (t, k) = -5 / n(t eikt=Dydr, (133)
pu=1 1 t . -1
bt = -3 (5) / M) (DT dr =~ YL k) (134)
5=2 §=2
ot
Ly(t, k) = zilk / n(1)a,(t)(1 — e2*=) dr. (135)
JO

Clearly, we only need to show that [;, 1 <j < 4 can be expressed in the form
a1 NI 1\#
; <ﬂ> o (t) + <ﬂ> oy (L, k). (136)

Obviously, I; and I4 are already in the form (136). We now use Lemma 3.1 to show that I, I5 can also be expanded in the form
(136). Observing that #(t(x)) = 0 for all x ¢ (0,1), 1“2 is absolutely continuous, and that a; WP 1<jg u — 1 are absolutely

continuous (due to the inductive assumption), we can use formula (40) to expand I, and each term]s( 1,...,u—1)ofzas
u-1
1 1
(i-2)
bk =) () 1770+ () e, (137)
2ik(t—T) #7] 1 d(/ ! 1 g
J(t.k) = <ﬁ) /0 1(T)as_1 (0)e240) dt — _,; <ﬂ> o (04 (1) - <ﬂ> by(t, k) (138)

with b : I' x C* — C uniformly bounded on I' x C* (see Lemma 3.1). Therefore, I, is in the form (136) due to (137), and I is
of the form (136) due to (138) and (134). Thus, m;.¢(t, k) can indeed be written in the form (127). O

Lemma 4.7. Under the conditions of the preceding lemma, suppose that the functions m,n,m,,n, : I x C* — C are defined by the
formulae (117), (118) and (129) and

ot
Ml k) = Mt k) — ot | e m iz, (139)

respectively. Then there exist positive real numbers A, cy, c3, c3 such that

C1
Im(t, k) — my(t, k)| < T (140)
(e, k) = (6 k)] < 2 (141)
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forall (t,k) e I x K(A ) and
n(t, k)

|m(t7 k) |k\“
for all (t,k) € [T1,00) x K(A).

-1I< (142)

Proof. Due to (124), the norm of the integral operator F; in (129) is of the order O(|k|™") for any k € C*, from which (140)
follows immediately.
Subtracting (139) from (118), we obtain

t
n(t, k) — n,(t,k) = m(t, k) — my(t,k) — ﬁ / 1n()e* =0 (m(t, k) — my(t,k))d. (143)
0
Now, the estimate (141) is a direct consequence of (143) and (140), and the fact that
Zlk’/’( ) 21kt 7) (-144)

is bounded for all k € K(A), —co < T < t < oo (see Observation 4.2). We now prove (142) by showing that there exists a po-
sitive number c3 such that

nu(t.k) 3
my(t, k) =k
for all (t,k) € [Ty, 00) x K(A). Indeed, Lemma 4.6 states that a,(t,k) in (127) is bounded and absolutely continuous for all

(t,k) € I' x C*, and q;(t) in (127) is also independent of k. Therefore, we can assume that the constant A has been chosen
so that for all (t,k) € I' x K(A),

j: <ﬁ>jaj(t) + <ﬁ> uaﬂ(t k)| <

or equivalently,

(145)

1

pit (146)

£

1
<5 (4 +ip - 2)

1 11
M€ k)] > 5+ (1+qy +ip, =02, (147)
Combining (139) with (127), we obtain
Ny =my +L(t, k) + I3(t, k) + Is(t, k), (148)
with L (t, k), I3(t, k) defined by (133) and (134), and Is(t, k) defined by the formula
A1 )
Is(t, k) = 1 / n(T)a,(t, k)e* =2 dg. (149)
2ik Jo
Noticing that #(t) = O for all Re(t) > Re(T;), we have
I
2 (t k) = <21k> (150)
u
(L, k) = ( ) bs(t, k) (151)
for all (t, k) € [T1,00) x K(A), due to (137) and (138). Consequently, there exists ¢ > 0 such that
L2 (t,k) + L5 (£, k) + Is (¢, k)| < @ (152)

for all (t,k) € [T1,00) x K(A), since a,(t, k), bs(t, k) are bounded for all (t,k) € [T1,00) x K(A),and s =1,...,u—1.
Now, the estimate (145) is a direct consequence of (148), (152) and (147). The estimate (142) is a direct consequence of
(145), (140), and (141). O

The following lemma is the counterpart of Lemma 4.7 for y (t, k); the proof is similar and therefore omitted.
Lemma 4.8. Suppose __ is defined in (63), q, p,y are three functions in c3([0, 1)) such that 1+ q(x) — o> > 0,7(x) > 0, p(x) > 0
for all x. Suppose further, for all x € R and complex k # 0,
X
t(x) = / J1+am - +ip(oydr, (153)
0
f(tk) = ey (tk), (154)

—lkt

g(t,k) = |,D+(t k). (155)
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Then under the conditions of the Lemma 4.7, there exist positive numbers A, d; such that
g(t, k) ds

flek) k"

for all (Re(t),k) € (—o0,0] x K(A).

(156)

Now, we are ready to demonstrate the existence of the asymptotic expansion (108) and (109) for impedance functions
p.,p_ by converting Schrédinger equation into an integral equation (Lemma 4.5) and using the Neumann series (Lemma 4.6).

Lemma 4.9. Suppose that impedance functions p_(x,k)p_(x, k) are defined by (31) and (32). Then,

G(x) &K )

_ i

p+(x7 k) - aO(x) + ik (lk)z (l.k)ﬂf] + O(k )1 (]57)
_ bix) ba(x) bua(x) u

p_(x, k) = bo(x) + 7 (il)? +o (il +0(k™) (158)

as |k| — oo. Here,a={a; : R — C},and b= {b; : R — C},i=0,1,2,---, u — 1, with integer u > 2, are two sequences of complex

functions.

Proof. Combining (71) with (140), (141), (115), (116), (127), and (129), we obtain (158). Eq. (157) is derived similarly. O
Theorems 4.3 and 4.4 prove the statements (A) and (B) outlined in the beginning of Section 4.

Theorem 4.3. Suppose that the functions q, p,y are in c3([0,1]), and that 1+ q(x) — o> > 0,7(x) > 0, p(x) > 0 for all x € R, and

q’,p",y" are absolutely continuous. Suppose further that D is the set of all pairs (x, k), where x € R,k € C*. Then

(a) ¢, and ¢_ are continuous functions of (x, k) and analytic functions of k for all x e R and k € C;
(b) p. and p_ are continuous functions of (x, k) and analytic functions of k in D;
(c) For all (x,k) € D,

1 ; 1 iy’ 1 iy(x) — o) p -
1 . iy’ 1 iy(x) — o) - p! .

Proof. We only give the proof for ¢_,p_ since the proof for ¢, ,p, is very similar. We introduce two auxiliary functions ¢, ¢:
R x C* — C by the formulae

dx, k) =¢_(x, k) —1, (161)

. ' (x,k) ik
¢>(x,k):d’*p((’;’)c)+;1 \/1+¢qq + iy — o2, (162)

and combining (161) and (162) with (13) and initial conditions (33) and (34), we obtain the linear first order ODEs

9(0.k) = px)(x. k) — iky/1+q, + iy, a% (163)

2

¢'(x.k) = f%(l +q(x) +ip(x) = 02)(d(x, k) + 1) (164)
subject to the initial conditions

$(0,k) =0, (165)

$(0,k) =0. (166)

According to Lemma 3.2, ¢, ¢ are continuous functions of x and analytic functions of k for all x € R and k € C, from which part
(a) follows immediately. Similarly, we obtain part (b) by combining part (a) with (32) and the fact that ¢_(x, k)=0 for all
(x,k) € D (see Lemma 4.3). The expansion (160) follows immediately from Lemmas 4.9 and 44. O

Corollary 4.10. Under the conditions of the preceding theorem, there exist positive numbers c1, ¢, such that

ek J; p-(thp(de <a, (167)

eik‘/; p_(tk)p(t)de <o (168)

forallt,x c[0,1],kcR orforal0<t<x<1,keC.
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Proof. Due to parts (b) and (c) of Theorem 4.3, the real part of the functions
X
Re (ik / p.(1, k)d‘c) <o, (169)
t
X
Re (ik/ p_(t, k)d‘c> < ¢y, (170)
t

where c¢; and ¢, does not depend on t or x for t,x € [0,1],k € R, or for all 0 < t < x < 1, from which (167) and (168) follow
immediately. O

Theorem 4.4. Suppose that the functions q, 7y, p are in cf'([0, 1]) with integer m > 2,q™, p™ (M are absolutely continuous and
1+4+q(x) — o > 0,7(x) > 0, p(x) > 0 for all x € R. Then there exists a positive real number a such that

a
Ip, (x, k) — p_(x, k)| < Tk (171)

forall (x,k) € Rx C".

Proof. Due to (71) and (72),

P (%, k)~ p_ (e K) = \/1+ q(x) + ip(x) - o2

1 (tﬂ;(t, —k) vt k)) (172)

—ikp(x) \v.(6,—k)  v_(tk)

Combining Lemmas 4.7 and 4.8, and Eqgs. (33) and (34) yields that (172) is true for all x ¢ (0, 1). In order to prove the theorem
for x € (0, 1), we observe that p, (x, —k) and p_(x, k) obey the same Riccati equation (80) due to (79) and (80). Thus, the dif-
ference s(x,k) = p, (x,—k) — p_(x, k) satisfies the ODE

s'(x,k) = ikp(x)(p,.(x, —k) + p_(x,k))s(x, k). (173)
Clearly, the solution to (173) is
S(X k) _ eikj:(er(t:’k)‘*’p—(tvk))/)(t)dts(o k) (174)

Due to (167) and (168), there exists constant b > 0 such that

ok Jo 0 (k) +p_(th)p(0yde

<b (175)

for all (x,k) € [0,1] x R. Due to (82) and (71), and Lemma 4.8, there exists a positive number c such that for all k € R,

V14+q, +iy, — o2 c
15(0,k)| = |p, (0, k) —p_(0.k)| = |p, (0, k) —% < (176)

Now, (171) follows immediately from (174) and (176). O

4.3. Trace formula

In this section, we prove Theorem 4.5, which is the principal analytical tool of this paper. Theorem 4.5 describes what are
known as the trace formulae for the impedance functions p_,p_ in the context of varying density, sound speed, and
attenuation.

Theorem 4.5. Trace formula. Suppose that the functions gq,p,y are in c§'([0,1]),m > 2,q™,y(™ p(™ are absolutely
continuous and 1 + q(x) — o> > 0,7(x) > 0, p(x) > 0 for all x € R. Then,

00

P(X) - (q'(x) + 1) = 2 p'(X) - (1 +q(x) + ip(x) — o) = % (1+q() +iy(x) - OCZ)PZ(X)/ (P, (%, k) —p_(x, k) dk.

—00

(177)
Moreover, there exists a positive number c such that
lp(x) - (q'(x) +1y'(x)) =2 p'(x) - (1 +q(x) + ip(x) — o)
-2+ W + B0 - )0 [ Z(mx, k)= p_(x K)dK| < — (178)

forallx e R,a > 0.
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Proof. Due to part (C) of Theorem 4.3, there exists ¢ > 0 such that

1 p(x) - (qXx) +1y(x) —2- (1+q(x) +ip(x) — o) - P’(X)> ‘ ¢
k) — k)—{-+- - <— 179
‘(p+(x7 <) p—(X7 <)) < lk 2 . pz(x) . (-l + q(x) + l,y(x) _ 0(2) |k|2 ( )
for all (x,k) € R x C*. Denoting by 7 the upper half circle of radius A, with clockwise orientation, in the complex k-plane, i.e.,
T = {klk € C", k| = A}, (180)

and noting that p, — p_ is an analytical function of k € C*, we obtain

!fmmw—mwmw:/mwm—nmmw. (181)
—-A JT

Substituting (179) into (181), we have

2 A
Z(1+aXx) +iy(x) - o?)p?(x) - / (b (x, k) — p_(x,k))dk
“A
= p(X) - (qX) +17 (X)) =2 p'(x) - (1 +q(x) +17(x) —0*) + O(k™) (182)

from which (177) follows immediately.
In order to prove (178), we rewrite (177) as

P - (q'(X)+ 1y (x) =2+ p'(x) - (1+q(x) +iy(x) — o)
= %(1 +q(x) +iy(x) — o) p*(x) - / (p, (%, k) — p_(x,k))dk + I(a) (183)

with I(a) given by the formula

l@) =21+ a0 +iy00 - - ([ 7)ol —p ek

2 . o
=200+ 00 -0 ([ 7)o tek) - p o) dk (184)
and using (171), we obtain a constant c such that
c(m-1)
Hal<, (185)

from which (178) follows immediately. O

Remark 4.6. Identity (177) is directly used to reconstruct functions p,q, and 7 in our algorithm. In particular,
1y Re(F(oq)) — Re(F(ay))

=" )

Re(F(o))(1 + q(x)

(186)

— 53) — Re(F(o)(1 + gx) ~ 2
PO~ 3)

gy 1)) (0 — 23) + 7(0) - (RelF(a) ~ Re(F(2:)
7= P~ ) | (158)

qx) = ; (187)

where

a

F(o) = %(1 +q(x) +iy(x) — ocz)pz(x)/i (p, (x, k) — p_(x, k))dk, (189)

a

and o4, o, represent two different incidence angles. Using more than two «'s would lead to an overdetermined system of
equations, and can be used to control the effects of noise.

Remark 4.7. Strictly speaking, most of the mathematical proofs in this section only apply to acoustic medium without atten-

uation, i.e., y(x) = O for all x € R, because of the violation of Eq. (124) for nonzero attenuation. However, numerical experi-
ments in Section 6 indicate that our scheme still works for the case of small attenuation, i.e. |[y(x)| < |1 + q(x) — 0.

5. The algorithm

This section describes the algorithm of the present paper, estimates its computational cost, and discusses the implemen-
tation in some detail.
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5.1. Description of the algorithm

In this section, we describe a reconstruction algorithm for the scalar Helmholtz equation in layered acoustic media

PL(x.k) - ﬁ((;:)) P06 K) I (1) +i-p(x) — o) - g (x,k) =0 (190)
subject to the initial conditions

b, (x, k) = e*V1ra+in=ax for gl x > 1, (191)

¢_(x,k) = emV1+a+in-=2x for g]] x < 0. (192)

In (190)-(192), x is a real number, k is a complex number in the upper half plane, « is the sine of the angle of incidence with
respect to the normal to the interface of layers, ¢, and ¢_ are the scalar fields associated with right-going and left-going
waves, respectively; the parameters to be recovered in this algorithm are the density p, potential g, and attenuation y of
the layered media. We assume p,q,y € cJ([0,1]), i.e,, p,q,7 have m continuous derivatives everywhere, and are defined
by Egs. (6)-(11).

As discussed in Sections 3 and 4, in order to reconstruct parameters p, q,?, we consider a system of integro-differential
equations

. _ A2 C14q(x) +iy(x) —o?
pL(x, k) = —ikp(x) <p+(x7 k) 2) > (193)
, . (2 T4 qx) +iy(x) —o?
k) = kp(x) - (2 kg - HIO LB 22, (194
) = Re(F(gl( 2{_ if%()F(sz)) (195)
iy Re(F(01))(1 +q(x) — 03) — Re(F(a2))(1 + q(x) — o) 196
70 PR — ) | %)
iy IM(F(on)) - (o — 03) +9(x) - (Re(F(er1)) — Re(F(ar2))) 197
/% PR~ ) | 17
with
Fo) = 214400 + 1700~ 2970 [ (.xJ) —p_(x )k (198)
subject to the initial conditions
p.(0,k) = po(k), (199)
D (01 k) — —W7 (200)
1
p(0) = py, (201)
q(0) = g4, (202)
7(0) =7, (203)
In (193) and (194), the impedance functions p,,p_: (R,C") — C are defined by the formulae
¢ (x,k)
PO = o) () (204
p_(x,k) = ¢- (k) (205)

—ikp(x)¢_(x, k)"

Eqs. (193) and (194) are Riccati equations obtained directly from the Helmholtz equation (190) and the definitions of imped-
ance functions (204) and (205); Egs. (195)-(197) are known as trace formulae, connecting the Fourier components of the
solutions of the Helmholtz equation to the parameters of the scattering objects to be recovered.

Our scheme amounts to solving numerically a self-contained set of ODEs, i.e., (193)-(197), subject to the initial conditions
(199)-(203). In this paper, the ODE solver from [9] is used.

As we shall see in Section 6, for sufficiently large a, the system of ODEs (193)-(197) has a unique solution for all x € [0, 1],
and this solution is stable with respect to small perturbations of the initial data p,(k). The inversion algorithm is (m — 1)th-
order convergent for all three parameters p, q,y with m the smoothness of p,q, and 7.
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5.2. Implementation

In implementing the algorithm stated above, the integral

[ (potxd —p(x (206)
in (198) is approximated by the trapezoidal rule T, i.e.,
M-1
Tu(p, (k) —p_(x,K)) =h > (b, (x. k) —p_(x, k) + g ((py(x,—a) —p_(x,—a)) + (p, (x,a) = p_(x,-))) (207)
Jj=—M+1

with h = a/M, k; = jh,j = —M, ..., M. Thus, the system of integro-differential Eqs. (193)-(197) subject to initial conditions
(199)-(203) is converted into a system of 8M + 7 ODEs

. . 1+q(x) +iy(x) — o?
p.(x. k) = —ikip(x) - (pi(x7 k;) — p? ® >7 (208)
k) = gp(r) - (k) - LI ), (209)
Re(F(o;)) — Re(F
pl(x) — e( (31(2% — ae%() (052)) , (2«10)
sy Re(F(on))(1 4 q(x) — 03) — Re(F(a2))(1 +q(x) — o)
7= p(X?(»’X% - 03) = @1

gy IMCE) (0~ 03) + 700 - (Re(F(z1)) ~ Re(F(22))
1= PR~ ) 212

with
F(o) = %(1 +q(x) +iy(x) — o) p*(X) - Tama (P (X, k) = p_(%,k)), (213)

and subject to the initial conditions

p.(0,k;) = po(k;), (214)
p (0,k) = —MOM’ (215)
p(0) = py, (216)
q(0) = qy, (217)
7(0) =7,. (218)

Remark 5.1. In the numerical examples in Section 6, the values of the initial impedance functions py(k;),j = —M,..., M,
required for the reconstruction scheme, are provided by solving forward scattering problems, namely, 4M + 1 independent
ODEs

¢ (x,kj) — %~ ¢ (%, k) + K7 - (1+q(x) +1-p(x) — o) - (X, k;) = 0 (219)

subject to the boundary conditions
b, (x, k) = eliVI+eti-ax  for gll x > 1 (220)

forki=j-&,j=-M,...,M and o = o, ot;. Again, we used the ODE solver in [9].

Remark 5.2. Due to Observation 3.3, for all x,k € R,

P, (% k) =p,(x,~k), (221)

p_(x,k) = p_(x, —k), (222)

thus, the integral

[ .~ p_tx (223)
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in (198) is equal to

2. /a Re(p. (x,k) — p_(x,k))dk. (224)
0

Therefore, the dimensions of the system of ODEs we consider (see Eqs. (208)-(212) is reduced to 4M + 7 from 8M + 7.

5.3. Complexity analysis

The time cost of the inverse scheme is of the order O(Ny - N,), where N, is the number of measurements in the frequency
domain, and N, is the number of nodes in the space domain, since the computational cost for the ODE solver we use is pro-
portional to the dimension of the ODE system (N, in our case) and the number of discretization points in the space domain
(N2).

Further, the storage requirements of the algorithm are also determined by N, and N,, and is of the form

S =0(K - Ni) + O(Ny), (225)

where K is a constant determined by the precision required by the ODE solver in [9]. For single precision, K = 22; for double
precision, K = 60.

6. Numerical examples

The algorithm of Section 5 has been implemented in Fortran 77 in double precision. In this section, we illustrate the per-
formance of the scheme as applied to several different classes of scattering objects, from Gaussian to discontinuous staircase-
shaped ones. The experiments were carried out on a 2.8GHz Pentium D desktop with 2Gb of RAM and an L2 cache of 1 Mb.
The calculations reported in Example 1 were carried out with a requested accuracy of 107'® in the ODE solver; the calcula-
tions reported in Examples 2-4 were carried out with a requested accuracy of 107,

In Examples 1 and 2, the scatterers satisfy the smoothness conditions of Theorem 4.3. In Examples 3, 3.1 and 3.2, the scat-
terers violate the smoothness conditions mildly, as the scatterers are continuous but their derivatives are not continuous. In
Example 4, the scatterers strongly violate the smoothness conditions, as those scatterers are discontinuous. The headings of
the Tables are defined as follows:

a is the highest frequency used in the algorithm;

hy is the step size in the discretization of the frequency interval;
N, is the number of discretization points in [-1,1];

E2.E2 E2 are the relative L* errors of p,q,7;

Ey ES,EY are the relative maximum errors of p,q,y;

tepy is the CPU time required in seconds.

Example 1. In this example, we reconstruct scattering parameters p,q, and ) of the Gaussian distribution given by the

formulae
p(x) = 1000 + 500 - e~ (226)
q(x) = e, (227)
7(x) = 0.01 +0.01 . 40 (228)

This is an example of scatterer whose p, q, and y are in Cg’ in the interval [-1,1]. Table 1 illustrates the numerical behavior of
the reconstruction algorithm, and Fig. 1 contains graphs of the exact and the recovered p, q,y € Cg’ (they are indistinguish-
able on the graph) and the input impedance function p, (-1, k). In this example, the algorithm converges extremely rapidly
as we expected.

Table 1

CPU time and accuracies for Example 1.

a Ty Ny E} E E; ficww
25 0.2 250 3.19E-05 6.95E-05 4.45E-05 3.5E+00
50 0.2 250 9.96E-06 2.05E-05 1.13E-05 7.0E+00
50 0.1 500 7.20E-09 1.48E-08 8.73E-09 1.9E+01
50 0.05 1000 7.13E-09 1.47E-08 8.60E-09 5.8E+01

100 0.2 500 9.54E-10 2.00E-09 1.28E-09 1.8E+01

100 0.1 1000 1.56E-12 3.22E-12 3.23E-12 5.9E+01

100 0.05 2000 4.21E-12 9.08E-12 9.08E-12 2.3E+02
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(¢) Reconstruction of (d) Real Part of p(—1, k)

Fig. 1. Reconstruction of Example 1 with a = 50.

Example 2. In this example, we reconstruct a scatterer defined by the formulae

t=x+1)-7 (229)
22 6

p(x) = 1000 + 100 - ((l — cos(4t)) — 55 (1 —cos(5t)) + E(l — cos(7t))>, (230)

qx)=04- ((1 —cos(3t)) — %(1 —cos(11t)) + %(1 - cos(12t))>, (231)

7(x) =0.01 +0.003 - <(l — cos(2t)) — %(1 — cos(3t)) + %(1 - cos(4t))>. (232)

The scatterer is a c3-function in R with support in the interval [-1,1]. The performance of the algorithm is demonstrated in
Table 2 and Fig. 2. As we can see from those tables, the convergence of the algorithm is actually better than the predicted
fourth-order convergence.

Example 3. In this example, we construct a scatterer with discontinuous derivatives supported on [—1,1], defined by the
formulae

p(x) = 1000 + 500 - sin(7x), (233)
e3x _ e—3x
q(x) = 0.2 - cos(30x) e (234)
11x e—]lx
7(x) = 0.01 4+ 0.004 - cos(20x) - el p e T (235)

Table 3 illustrates the numerical behavior of the algorithm; Fig. 3 demonstrates the exact and the reconstructed p,q, y, and
the input impedance function p, (—1, k). The algorithm is not convergent in this case, although the input impedance function
p.(—1,k) decays for large frequencies. Further investigations (see [7]) show that, as we move with the ODE solver towards






Table 3
CPU time and accuracies for Example 3.

a hy Ny Ef, Eg E?, tcpu
25 0.025 1000 1.74E-02 4.10E-02 1.73E-01 1.7E+01

50 0.025 1000 3.22E-02 1.88E-01 1.66E-01 4.0E+01
0.025 2000 2.11E-02 1.30E-01 8.29E-02 1.7E+02
0.025 4000 1.71E-02 1.13E-01 1.62E-01 6.7E+02
1600 . . .
1400
1200
1000
800
600
0 05 0 05 o 05 0 05 1

(b) Reconstruction of 1+ ¢

0.015
0.014
0.013
0.012
0.011

0.01
0.009
0.008
0.007
0.006
0.005

ple 3.2. This example uses the same q and ) as in Example 3, but with a constant p; thus we have

p(x) = 1000, (239)

e3x _ e—3x
900 = 0.2 cos(30%) - — . (240)
11x _ p—11x
7(x) = 0.01 + 0.004 - cos(20x) - ﬁ (241)

illustrates the numerical behavior of the reconstruction algorithm. Linear convergence is observed for both g and y.
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Table 5
CPU time and accuracies for Example 3.2.
a hye Ny E E; Ey Ey tepu
25 0.05 1000 7.73E-02 1.35E-01 2.06E-01 4.67E-01 8.1E+00
50 0.1 1000 4.46E-02 1.20E-01 1.24E-01 4.63E-01 8.5E+00
100 0.1 2000 2.22E-02 7.67E-02 6.61E-02 3.41E-01 3.3E+01
200 0.1 4000 1.15E-02 1.74E-02 3.53E-02 6.12E-02 1.6E+02
Table 6
CPU time and accuracies for Example 4.
a hy Ny E E; E; tepu
25 0.05 500 1.81E-02 3.77E-02 2.83E-02 4.2E+00
50 0.05 1000 2.55E-02 5.50E-02 2.25E-02 1.8E+01
100 0.1 1000 2.10E-02 4.53E-02 2.39E-02 1.8E+01
200 0.05 4000 3.77E-02 7.85E-02 5.06E-02 3.5E+02
Example 4. Here, we reconstruct a staircase-shaped scatterer defined by the formulae
1050 x € (—o0,-0.8]
1150 x € (-0.8,-0.4]
1250 x € (-0.4,0.0]
X) = 242
PR=Y1350  xe(0.0,04) (242)
1300 x € (0.4,0.8)
1200 x € (0.8,00)
0 xe(-00,-0.8]
0.1 xe(-0.38,-0.6]
0.2 xe(-0.6,-0.2]
X) = . 243
10=903 xe(-02,02] (243)
02 xe(0.2,0.8]
0 x € (0.8,00)
0.01 Xx¢€ (—o00,—-0.8]
0.012 xe(-0.8,-0.6]
0.01 xe(-0.6,-0.2]
P(x) = ¢ 0.008 xe(-0.2,0.2] (244)
0.007 x€(0.2,0.6]
0.008 x € (0.6,0.8]
0.009 x € (0.8,00)

The numerical results are shown in Table 6, and Fig. 4. The algorithm does not converge in this situation.The following obser-
vations can be made from the tables above, and from other numerical experiments performed by us.

1.

For scatterers satisfying the conditions of Theorem 4.3 (Examples 1 and 2), the numerical algorithm of Section 5 displays
convergence of order m — 1, where m is the smoothness of the scatterer; the CPU time required is proportional to N, - Ny,

where N, and N, are the numbers of discretization points in frequency and space domain, respectively.
. For scatterers violating the conditions of Theorem 4.3 mildly, the algorithm does not converge. However, the algorithm

exhibits linear convergence (see Examples 3.1 and 3.2) for the following two particular categories of scatterers violating

the conditions of Theorem 4.3 mildly,

A. p,q are continuous but their derivatives are not, and y = 0,
B. g,y are continuous but their derivatives are not, and p is a constant.

. When the scatterer is discontinuous (Example 4), the algorithm produces results demonstrated in Fig. 4. The oscillatory

behavior near the discontinuities is similar to the well-known Gibbs phenomenon. In general, the algorithm is not con-
vergent for such scatterers. However, for scatterers of the following categories
A. q is discontinuous, p is a constant, y = 0,
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Fig. 4. Reconstruction of Example 4 with a = 100.

B. yis discontinuous, p and q are constants, the convergence of the algorithm is of the order O (%) where a is the high-
est frequency.
4. When the initial data is perturbed (see [7] for detail), the error of the reconstruction is proportional to the magnitude of
the perturbation, and the proportionality coefficient is 1.
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